沈阳师范大学学报(自然科学版)

2020, v.38;No.133(03) 207-213

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

基于Q学习的有限时间随机线性二次最优控制
Finite-time stochastic linear quadratic optimal control based on Q-learning

王涛;罗敏娜;王娜;崔黎黎;

摘要(Abstract):

针对系统状态和控制均依赖于噪声的随机线性离散时间系统,采用基于值迭代的Q学习迭代算法求解模型参数部分未知的有限时间随机线性二次(SLQ)最优控制问题。首先给出SLQ最优控制问题可达性条件和适应性条件,并通过矩阵拉格朗日乘子算法得到最优控制增益矩阵序列以及相应的随机代数Riccati方程(SARE)。其次,以值迭代算法为基础定义Q函数,利用Q学习迭代算法获得每个最优控制增益矩阵所对应的迭代控制增益矩阵序列和H矩阵序列。该算法依赖于系统状态信息,摆脱了系统模型参数部分未知的限制,并证明控制增益矩阵序列收敛到各自的最优控制增益矩阵,H矩阵序列收敛到各自的最优H矩阵。最后通过一个仿真实例说明了Q学习迭代算法的有效性。

关键词(KeyWords): Q学习;最优控制;随机代数Riccati方程;控制增益矩阵

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金青年科学基金项目(61703289);; 辽宁省科技厅自然科学基金资助项目(2019-ZD-0478)

作者(Author): 王涛;罗敏娜;王娜;崔黎黎;

Email:

DOI:

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享